Toxins that are activated by HIV type-1 protease through removal of a signal for degradation by the N-end-rule pathway.

نویسندگان

  • P O Falnes
  • R Welker
  • H G Kräusslich
  • S Olsnes
چکیده

Diphtheria toxin enters the cytosol of mammalian cells where it inhibits cellular protein synthesis, leading to cell death. Recently we found that the addition of a signal for N-end-rule-mediated protein degradation to diphtheria toxin substantially reduced its intracellular stability and toxicity. These results prompted us to construct a toxin containing a degradation signal that is removable through the action of a viral protease. In principle, such a toxin would be preferentially stabilized, and thus activated, in cells expressing the viral protease in the cytosol, i.e. virus-infected cells, thereby providing a specific eradication of these cells. In the present work we describe the construction of toxins that contain a signal for N-end-rule-mediated degradation just upstream of a cleavage site for the protease from HIV type 1 (HIV-1 PR). We show that the toxins are cleaved by HIV-1 PR exclusively at the introduced sites, and thereby are converted from unstable to stable proteins. Furthermore, this cleavage substantially increased the ability of the toxins to inhibit cellular protein synthesis. However, the toxins were unable to selectively eradicate HIV-1-infected cells, apparently due to low cytosolic HIV-1 PR activity, since we could not detect cleavage of the toxins by HIV-1 PR in infected cells. Alternative strategies for the construction of toxins that can specifically be activated by viral proteases are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

Degradation of HIV-1 integrase by the N-end rule pathway.

Human immunodeficiency virus type-1 (HIV-1) integrase catalyzes the irreversible insertion of the viral genome into host chromosomal DNA. We have developed a mammalian expression system for the synthesis of authentic HIV-1 integrase in the absence of other viral proteins. Integrase, which bears a N-terminal phenylalanine, was found to be a short-lived protein in human embryo kidney 293T cells. ...

متن کامل

Drug- Resistance- Associated Mutations and HIV Sub-Type Determination in Drug-Naïve and HIV-Positive Patients under Treatment with Antiretroviral Drugs

Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were d...

متن کامل

Sonocatalytic degradation of p-chlorophenol by nanoscale zero-valent copper activated persulfate under US irradiation in aqueous solutions

In this study, nanoscale zero-valent copper (nZVC) as catalyst activated persulfate (PS) was used for the degradation of p-chlorophenol (p-CP) under ultrasonic (US) irradiation in aqueous solution. The effect of different operational parameters such as solution pH (3.5-10.5), PS concentration (1-7.5 mm/L), nZVC dosage (5-35 mg/L) and initial p-CP concentration (10-100 mg/L) were evaluated at di...

متن کامل

The Jak-Stat Signaling Pathway of Interferons System: Snapshots

Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 343 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999